<span id="zlnh1"></span><span id="zlnh1"></span><span id="zlnh1"><dl id="zlnh1"></dl></span>
<strike id="zlnh1"></strike>
<strike id="zlnh1"><i id="zlnh1"><del id="zlnh1"></del></i></strike>
<span id="zlnh1"></span>
<strike id="zlnh1"></strike>
<ruby id="zlnh1"><i id="zlnh1"></i></ruby>
<span id="zlnh1"></span>
<strike id="zlnh1"><dl id="zlnh1"></dl></strike>
<span id="zlnh1"><dl id="zlnh1"><ruby id="zlnh1"></ruby></dl></span>
您当前位置: 首页  >  学术讲座

讲准字462号:Stability of peakons of the shallow water modeling with cubic nonlinearity

发布时间:2019-12-23|浏览次数:

讲座报告主题:Stability of peakons of the shallow water modeling with cubic nonlinearity
专家姓名:刘跃  
日期:2019-12-30时间:15:30
地点:理学院206  
主办单位:理学院

主讲简介:刘跃,美国德克萨斯大学阿灵顿分校教授,1994年获布朗大学博士学位。刘跃教授是目前国际上偏微分方程研究尤其是浅水波领域的一流专家。在偏微分方程,应用分析和流体力学,可积系统与孤子理论,非线性波方程的稳定性理论、奇异性形成、局部和整体适定性等领域取得国际领先的成果。在《Physica D》、《J. Differential Equations》、《Nonlinearity》、《Quart. of Appl. Math.》等国际重要刊物上发表论文80余篇。研究专长:应用分析和流体力学、可积系统和骨子里轮、非线性波方程等。

主讲内容:In this talk, I will start by demonstrating the underlying complexity of the physical system,  and then I will discuss  possible simplifications in the "shallow water" regime along with the relevant physical phenomena. In particular, I will derive some simplified nonlocal shallow-water models with cubic nonlinearity, such as integrable Novikov and Modified Camassa-Holm-type equations. It is shown these approximating model equations possess a single peaked soliton and multi-peakon solutions. Finally I will prove the single peaked soliton is orbitally stable in the energy space.


欢迎师生参加!

金祥彩票手机登录